Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 916
1.
PeerJ ; 12: e17378, 2024.
Article En | MEDLINE | ID: mdl-38726378

Many citrus species and cultivars are grown successfully in tropical and subtropical countries, as well as in arid and semi-arid regions with low levels of organic matter and low cation exchange, resulting in lower nutrient uptake by the plant. The essential nutrients needed for citrus flowering and fruit set are limited in winter due to a reduction in transpiration rate, negatively effecting vegetative growth, flowering, yield, and fruit quality. The present investigation was carried out to assess the nutritional status, fruit yield parameters, and fruit quality of Valencia orange trees after foliar spraying of seaweed extract (SW) combined with calcium chloride and boric acid and their combinations in the 2020/2021 and 2021/2022 seasons. The treatments were arranged in a split-plot design (three levels spraying seaweed extract × four levels spraying calcium chloride and boric acid and their combinations × four replicates × one tree/replicate). The results indicated that all of the characteristics measured, including leaf chlorophyll, leaf mineral contents, fruit yield parameters, fruit physical properties, and fruit chemical properties, were significantly affected by the foliar spraying of seaweed extract (SW) combined with calcium chloride and boric acid and their combinations. Although all treatments increased the productivity and the physical and chemical properties of Valencia orange fruits compared to the control, a treatment of 10 g/L SW combined with 0.5 g/L boric acid and 1 g/L calcium chloride produced superior results. This ratio of SW, boric acid, and calcium chloride is therefore recommended to enhance productivity and improve the physico-chemical properties of Valencia orange for greater fruit yield.


Boric Acids , Calcium Chloride , Citrus sinensis , Fruit , Seaweed , Boric Acids/pharmacology , Citrus sinensis/chemistry , Fruit/chemistry , Fruit/drug effects , Seaweed/chemistry , Seaweed/metabolism , Calcium Chloride/pharmacology , Plant Leaves/drug effects , Plant Leaves/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chlorophyll/metabolism
2.
Funct Plant Biol ; 512024 May.
Article En | MEDLINE | ID: mdl-38743838

Soil salinisation is an important abiotic stress faced in grape cultivating, leading to weakened plant vigour and reduced fruit quality. Melatonin as a novel hormone has shown positive exogenous application value. Therefore, this study used wine grape (Vitis vinifera ) 'Pinot Noir' as a test material to investigate the changes of foliar spraying with different concentrations of melatonin on the physiology and fruit quality of wine grapes in a field under simulated salt stress (200mmolL-1 NaCl). The results showed that foliar spraying of melatonin significantly increased the intercellular CO2 concentration, maximum photochemical quantum yield of PSII, relative chlorophyll and ascorbic acid content of the leaves, as well as the single spike weight, 100-grain weight, transverse and longitudinal diameters, malic acid, α-amino nitrogen and ammonia content of fruits, and decreased the initial fluorescence value of leaves, ascorbate peroxidase activity, glutathione content, fruit transverse to longitudinal ratio and tartaric acid content of plants under salt stress. Results of the comprehensive evaluation of the affiliation function indicated that 100µmolL-1 melatonin treatment had the best effect on reducing salt stress in grapes. In summary, melatonin application could enhance the salt tolerance of grapes by improving the photosynthetic capacity of grape plants under salt stress and promoting fruit development and quality formation, and these results provide new insights into the involvement of melatonin in the improvement of salt tolerance in crop, as well as some theoretical basis for the development and industrialisation of stress-resistant cultivation techniques for wine grapes.


Fruit , Melatonin , Photosynthesis , Plant Leaves , Salt Stress , Vitis , Vitis/drug effects , Vitis/physiology , Vitis/growth & development , Melatonin/pharmacology , Melatonin/administration & dosage , Fruit/drug effects , Fruit/growth & development , Salt Stress/drug effects , Plant Leaves/drug effects , Photosynthesis/drug effects , Chlorophyll/metabolism , Ascorbic Acid/pharmacology , Wine
3.
J Hazard Mater ; 470: 134164, 2024 May 15.
Article En | MEDLINE | ID: mdl-38583200

Strawberry, a globally popular crop whose fruit are known for their taste and health benefits, were used to evaluate the effects of polyethylene microplastics (PE-MPs) on plant physiology and fruit quality. Plants were grown in 2-L pots with natural soil mixed with PE-MPs at two concentrations (0.2% and 0.02%; w/w) and sizes (⌀ 35 and 125 µm). Plant physiological responses, root histochemical and anatomical analyses as well as fruit biometric and quality features were conducted. Plants subjected to ⌀ 35 µm/0.2% PE-MPs exhibited the most severe effects in terms of CO2 assimilation due to stomatal limitations, along with the highest level of oxidative stress in roots. Though no differences were observed in plant biomass, the impact on fruit quality traits was severe in ⌀ 35 µm/0.2% MPs treatment resulting in a drop in fruit weight (-42%), soluble solid (-10%) and anthocyanin contents (-25%). The smallest sized PE-MPs, adsorbed on the root surface, impaired plant water status by damaging the radical apparatus, which finally resulted in alteration of plant physiology and fruit quality. Further research is required to determine if these alterations also occur with other MPs and to understand more deeply the MPs influence on fruit physio-chemistry.


Fragaria , Fruit , Microplastics , Plant Roots , Polyethylene , Fragaria/drug effects , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Fruit/drug effects , Polyethylene/toxicity , Microplastics/toxicity , Soil Pollutants/toxicity , Anthocyanins/analysis , Oxidative Stress/drug effects
4.
Sensors (Basel) ; 24(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38676043

The Polar Qualification System (PQS) was applied on hue spectra fingerprinting to describe color changes in tomato during storage. The cultivar 'Pitenza' was harvested at six different maturity stages, and half of the samples were subjected to gaseous 1-methylcyclopropene (1-MCP) treatment. Reference color parameters were recorded with a vision system colorimeter instrument, and the fruit pigment concentration was assessed with the DA-index®. Additionally, acoustic firmness (Stiffness) was measured. All acquired reference parameters were used to grade fruit in the supply chain. The applied 1-MCP treatments were used to control the ripening of climacteric horticultural produce. Both the DA-index® and stiffness values, presented as chlorophyll concentration and acoustic firmness, showed significant differences among maturity stages and treated and control samples and in their kinetics during storage. The machine vision parameter PQS-X was significantly affected by 1-MCP treatment (F = 10.18, p < 0.01), while PQS-Y was primarily affected by storage time (F = 18.18, p < 0.01) and maturity stage (F = 11.15, p < 0.01). A significant correlation was achieved for acoustic firmness with normalized color (r > 0.78) and PQS-Y (r > 0.80), as well as for the DA-index® (r > 0.9). The observed color changes agreed with the reference measurements. The significant statistical effect on the PQS coordinates suggests that hue spectra fingerprinting with this data compression technique is suitable for quality assessment based on color.


Color , Cyclopropanes , Solanum lycopersicum , Solanum lycopersicum/drug effects , Solanum lycopersicum/chemistry , Solanum lycopersicum/growth & development , Cyclopropanes/pharmacology , Fruit/chemistry , Fruit/drug effects , Pigmentation/drug effects , Pigmentation/physiology , Chlorophyll/analysis , Chlorophyll/metabolism , Pigments, Biological/analysis
5.
Plant Physiol Biochem ; 210: 108543, 2024 May.
Article En | MEDLINE | ID: mdl-38554534

Gibberellin A3 (GA3) is often used as a principal growth regulator to increase plant size. Here, we applied Tween-20 (2%)-formulated GA3 (T1:40 mg/L; T2:70 mg/L) by dipping the clusters at the initial expansion phase of 'Red Globe' grape (Vitis vinifera L.) in 2018 and 2019. Tween-20 (2%) was used as a control. The results showed that GA3 significantly increased fruit cell length, cell size, diameter, and volume. The hormone levels of auxin (IAA) and zeatin (ZT) were significantly increased at 2 h (0 d) -1 d after application (DAA0-1) and remained significantly higher at DAA1 until maturity. Conversely, ABA exhibited an opposite trend. The mRNA and non-coding sequencing results yielded 436 differentially expressed mRNA (DE_mRNAs), 79 DE_lncRNAs and 17 DE_miRNAs. These genes are linked to hormone pathways like cysteine and methionine metabolism (ko00270), glutathione metabolism (ko00480) and plant hormone signal transduction (ko04075). GA3 application reduced expression of insensitive dwarf 2 (GID2, VIT_07s0129g01000), small auxin-upregulated RNA (SAUR, VIT_08s0007g03120) and 1-aminocyclopropane-1-carboxylate synthase (ACS, VIT_18s0001g08520), but increased SAUR (VIT_04s0023g00560) expression. These four genes were predicted to be negatively regulated by vvi-miR156, vvi-miR172, vvi-miR396, and vvi-miR159, corresponding to specific lncRNAs. Therefore, miRNAs could affect grape size by regulating key genes GID2, ACS and SAUR. The R2R3 MYB family member VvRAX2 (VIT_08s0007g05030) was upregulated in response to GA3 application. Overexpression of VvRAX2 in tomato transgenic lines increased fruit size in contrast to the wild type. This study provides a basis and genetic resources for elucidating the novel role of ncRNAs in fruit development.


Fruit , Gibberellins , Plant Growth Regulators , Vitis , Vitis/genetics , Vitis/metabolism , Vitis/drug effects , Vitis/growth & development , Gibberellins/metabolism , Gibberellins/pharmacology , Fruit/genetics , Fruit/metabolism , Fruit/growth & development , Fruit/drug effects , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism
6.
New Phytol ; 242(5): 2148-2162, 2024 Jun.
Article En | MEDLINE | ID: mdl-38501546

Although saline-alkali stress can improve tomato quality, the detailed molecular processes that balance stress tolerance and quality are not well-understood. Our research links nitric oxide (NO) and γ-aminobutyric acid (GABA) with the control of root malate exudation and fruit malate storage, mediated by aluminium-activated malate transporter 9/14 (SlALMT9/14). By modifying a specific S-nitrosylated site on pyruvate-dependent GABA transaminase 1 (SlGABA-TP1), we have found a way to enhance both plant's saline-alkali tolerance and fruit quality. Under saline-alkali stress, NO levels vary in tomato roots and fruits. High NO in roots leads to S-nitrosylation of SlGABA-TP1/2/3 at Cys316/258/316, reducing their activity and increasing GABA. This GABA then reduces malate exudation from roots and affects saline-alkali tolerance by interacting with SlALMT14. In fruits, a moderate NO level boosts SlGABA-TP1 expression and GABA breakdown, easing GABA's block on SlALMT9 and increasing malate storage. Mutants of SlGABA-TP1C316S that do not undergo S-nitrosylation maintain high activity, supporting malate movement in both roots and fruits under stress. This study suggests targeting SlGABA-TP1Cys316 in tomato breeding could significantly improve plant's saline-alkali tolerance and fruit quality, offering a promising strategy for agricultural development.


Alkalies , Fruit , Malates , Nitric Oxide , Plant Roots , Solanum lycopersicum , gamma-Aminobutyric Acid , Solanum lycopersicum/genetics , Solanum lycopersicum/drug effects , Malates/metabolism , Nitric Oxide/metabolism , Alkalies/pharmacology , gamma-Aminobutyric Acid/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Fruit/genetics , Fruit/drug effects , 4-Aminobutyrate Transaminase/metabolism , 4-Aminobutyrate Transaminase/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/drug effects
7.
Phytochemistry ; 213: 113766, 2023 Sep.
Article En | MEDLINE | ID: mdl-37343736

The increased activity of PARP enzymes is associated with a deficiency of NAD+, as well as with a loss of NADPH and ATP, and consequent deterioration of the redox state in fruits. In this study, we checked whether treatment with nicotinamide (NAM) would affect PARP-1 expression and NAD+ metabolism in strawberry fruit during storage. For this purpose, strawberry fruits were treated with 10 mM NAM and co-treated with NAM and UV-C, and then stored for 5 days at 4 °C. Research showed that nicotinamide contributes to reducing oxidative stress level by reducing PARP-1 mRNA gene expression and the protein level resulting in higher NAD+ availability, as well as improving energy metabolism and NADPH levels in fruits, regardless of whether they are exposed to UV-C. The above effects cause fruits treated with nicotinamide to be characterised by higher anti-radical activity, and a lower level of reactive oxygen species in the tissue.


Food Storage , Fragaria , Fruit , Niacinamide , Catalase , Crop Production/methods , Electron Transport Complex II , Food Storage/methods , Fragaria/drug effects , Fragaria/metabolism , Fragaria/radiation effects , Fruit/drug effects , Fruit/metabolism , Fruit/radiation effects , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , NAD/metabolism , NADP/metabolism , Niacinamide/pharmacology , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Reactive Oxygen Species/metabolism , RNA, Messenger , Superoxide Dismutase , Ultraviolet Rays
8.
Plant Physiol Biochem ; 196: 370-380, 2023 Mar.
Article En | MEDLINE | ID: mdl-36746008

To explore the use of L-aspartic acid nano-calcium (nano-Ca) to reduce nectarine fruit-cracking, we sprayed the crack-susceptible nectarine cultivar 'Huaguang' [Prunus persica (L.) Batsch var. nectarina (Ait.) Maxim.] with nano-Ca. The results showed that nano-Ca could reduce the fruit-cracking percentage of nectarine by more than 20%. Nano-Ca was effective because it increased the calcium pectinate content of the peel, reduced the activity of cell-wall metabolic enzymes, and changed the peel structure and enhanced its toughness. We also found that nano-Ca enhanced calmodulin activity in leaves, upregulated key genes of sucrose synthesis in leaves and sucrose transport in stem phloem, and significantly increased the soluble sugar content in the fruit by more than 2%. In addition, Nano-Ca also enhanced calmodulin activity in peel and up-regulated key genes related to anthocyanin-synthesis, promoting anthocyanin accumulation in the peel. The result will lay a theoretical foundation for the physiological and molecular mechanisms of nectarine-cracking and its prevention.


Calcium , Fertilizers , Nanocomposites , Prunus persica , Fruit/drug effects , Fruit/metabolism , Prunus persica/anatomy & histology , Prunus persica/drug effects , Prunus persica/metabolism , Calmodulin/metabolism , Sucrose/metabolism , Pectins/metabolism
9.
Molecules ; 27(4)2022 Feb 17.
Article En | MEDLINE | ID: mdl-35209165

In recent years, an increasing interest in reducing sugar consumption has been observed and many studies are conducted on the use of polyols in the osmotic dehydration process to obtain candied or dried fruits. The studies in the literature have focused on the kinetics of the process as well as the basic physical properties. In the scientific literature, there is a lack of investigation of the influence of such polyol solutions such as sorbitol and mannitol used as osmotic substances during the osmotic dehydration process on the contents of bioactive components, including natural colourants. Thus, the aim of the study was to evaluate the impact of polyols (mannitol and sorbitol) in different concentrations on the process kinetics and on chosen physical (colour and structural changes) as well as chemical (sugars and polyol content, total anthocyanin content, total polyphenol content, vitamin C, antioxidant activity) properties of osmotic-dehydrated organic strawberries. Generally, the results showed that the best solution for osmotic dehydration is 30% or 40% sorbitol solutions, while mannitol solution is not recommended due to difficulties with preparing a high-concentration solution and its crystallization in the tissue. In the case of sorbitol, the changes of bioactive compounds, as well as colour change, were similar to the sucrose solution. However, the profile of the sugar changed significantly, in which sucrose, glucose, and fructose were reduced in organic strawberries and were partially replaced by polyols.


Fragaria/chemistry , Fragaria/drug effects , Fruit/chemistry , Fruit/drug effects , Phytochemicals/chemistry , Phytochemicals/pharmacology , Polymers/pharmacology , Dehydration , Dose-Response Relationship, Drug , Kinetics , Osmosis , Phytochemicals/analysis , Polyphenols/analysis , Sucrose/analysis
10.
Toxicology ; 468: 153112, 2022 02 28.
Article En | MEDLINE | ID: mdl-35101591

The global increase in the demand for ripe fruits has induced unhealthy use of toxic chemicals in fruit ripening. One of such chemicals in common use is calcium carbide (CaC2). Due to its nature, commercial CaC2 is consistently found to contain impurities such as Arsenic and other toxic and carcinogenic chemicals. Few studies have only reported acute associative effects of CaC2, whereas there is only sparse evidence of its chronic and long-term impact. This article reviewed all the information on the nature of commercial CaC2 used for food processing. Meanwhile, all reports on the acute effects of CaC2, such as skin burns, skin irritations and inflammation, were summarized. Despite reported acute cases, an increase in commercial CaC2 for fruit ripening has been reported in recent times, especially in developing countries, as many vendors may consider the toxic effects/risks as negligible. Therefore, this study highlighted the paucity in research studies on the chronic impact of commercial CaC2 while proposing possible mechanisms for CaC2 induction of cancer, cardiovascular dysfunction, diabetic mellitus and others. Furthermore, suggestions on further studies to unravel the chronic impacts of CaC2 on health and recommendations for viable alternatives of fruit ripening with minimal or zero toxicity were proffered. Finally, other suggestions such as improving CaC2 detection technologies and innovative grassroots educational programs will strengthen national and international agencies to enforce restrictions on the illicit use of the toxicant for fruit ripening.


Acetylene/analogs & derivatives , Food Additives/toxicity , Fruit/drug effects , Acetylene/chemistry , Acetylene/toxicity , Aerosols , Animals , Arsenic/analysis , Arsenic/toxicity , Drug Contamination , Food Additives/chemistry , Food Contamination/prevention & control , Food Safety , Foodborne Diseases/prevention & control , Fruit/growth & development , Humans , Powders
11.
Molecules ; 27(3)2022 Jan 21.
Article En | MEDLINE | ID: mdl-35163960

The calyxes and fruits of Physalis alkekengi L. var. franchetii (Mast.) Makino (P. alkekengi), a medicinal and edible plant, are frequently used as heat-clearing and detoxifying agents in thousands of Chinese medicine prescriptions. For thousands of years in China, they have been widely used in clinical practice to treat throat disease, hepatitis, and bacillary dysentery. This systematic review summarizes their structural analysis, quality control, pharmacology, and pharmacokinetics. Furthermore, the possible development trends and perspectives for future research studies on this medicinal plant are discussed. Relevant information on the calyxes and fruits of P. alkekengi was collected from electronic databases, Chinese herbal classics, and Chinese Pharmacopoeia. Moreover, information was collected from ancient documents in China. The components isolated and identified in P. alkekengi include steroids, flavonoids, phenylpropanoids, alkaloids, nucleosides, terpenoids, megastigmane, aliphatic derivatives, organic acids, coumarins, and sucrose esters. Steroids, particularly physalins and flavonoids, are the major characteristic and bioactive ingredients in P. alkekengi. According to the literature, physalins are synthesized by the mevalonate and 2-C-methyl-d-erythritol-4-phosphate pathways, and flavonoids are synthesized by the phenylpropanoid pathway. Since the chemical components and pharmacological effects of P. alkekengi are complex and varied, there are different standards for the evaluation of its quality and efficacy. In most cases, the analysis was performed using high-performance liquid chromatography coupled with ultraviolet detection. A pharmacological study showed that the crude extracts and isolated compounds from P. alkekengi had extensive in vitro and in vivo biological activities (e.g., anti-inflammatory, anti-tumor, immunosuppressive, antibacterial, anti-leishmanial, anti-asthmatic, anti-diabetic, anti-oxidative, anti-malarial, anti-Alzheimer's disease, and vasodilatory). Moreover, the relevant anti-inflammatory and anti-tumor mechanisms were elucidated. The reported activities indicate the great pharmacological potential of P. alkekengi. Similarly, studies on the pharmacokinetics of specific compounds will also contribute to the progress of clinical research in this setting.


Biological Products/analysis , Physalis/enzymology , Physalis/metabolism , Biological Products/pharmacology , China , Chromatography, High Pressure Liquid/methods , Esters/chemistry , Flavonoids , Flowers/drug effects , Fruit/drug effects , Physalis/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Sucrose/chemistry
12.
BMC Plant Biol ; 22(1): 23, 2022 Jan 08.
Article En | MEDLINE | ID: mdl-34998386

BACKGROUND: Our previous study has demonstrated that the transcription of AchnKCS involved in suberin biosynthesis was up-regulated by exogenous abscisic acid (ABA) during the wound suberization of kiwifruit, but the regulatory mechanism has not been fully elucidated. RESULTS: Through subcellular localization analysis in this work, AchnbZIP29 and AchnMYB70 transcription factors were observed to be localized in the nucleus. Yeast one-hybrid and dual-luciferase assay proved the transcriptional activation of AchnMYB70 and transcriptional suppression of AchnbZIP29 on AchnKCS promoter. Furthermore, the transcription level of AchnMYB70 was enhanced by ABA during wound suberization of kiwifruit, but AchnbZIP29 transcription was reduced by ABA. CONCLUSIONS: Therefore, it was believed that ABA enhanced the transcriptional activation of AchnMYB70 on AchnKCS by increasing AchnMYB70 expression. On the contrary, ABA relieved the inhibitory effect of AchnbZIP29 on transcription of AchnKCS by inhibiting AchnbZIP29 expression. These results gave further insight into the molecular regulatory network of ABA in wound suberization of kiwifruit.


Abscisic Acid/metabolism , Actinidia/growth & development , Actinidia/genetics , Gene Expression Regulation, Plant/drug effects , Lipid Metabolism/genetics , Plant Growth Regulators/metabolism , Transcription Factors/drug effects , Actinidia/drug effects , Crops, Agricultural/drug effects , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Fruit/drug effects , Fruit/genetics , Fruit/growth & development , Plant Growth Regulators/genetics
13.
J Sci Food Agric ; 102(3): 1174-1184, 2022 Feb.
Article En | MEDLINE | ID: mdl-34338316

BACKGROUND: The commercial preservation of table grapes largely depends on the application of sulfur dioxide (SO2 ). However, little is known about whether SO2 participates in sulfur metabolism to improve the postharvest quality of table grapes. In this study, the contents of sulfur-containing compounds, activities of enzymes, and expression of genes involved in sulfur metabolism in table grapes (Vitis vinifera cv. Thompson Seedless) were evaluated. RESULTS: The results indicated that SO2 treatment maintained the postharvest quality of table grapes. The sulfite content in rachises and berries, but not the sulfate content, increased in response to SO2 treatment. SO2 caused high activities of sulfite reductase, O-acetylserine (thiol)-lyase, and γ-glutamylcysteine synthetase, thereby increasing the contents of cysteine, hydrogen sulfide, and glutathione in the rachises and berries. The expression of VvSURTL, VvATPS1, VvATPS2, and VvAPR3 decreased in response to SO2 treatment; however, the transcript levels of VvSiR1 and VvOASTL exhibited the opposite tendency. CONCLUSION: These findings indicated that the sulfite converted from SO2 participated in sulfur metabolism and maintained the postharvest quality of table grapes by modulating the contents of metabolites, activities of enzymes, and expression of genes related to sulfur metabolism. © 2021 Society of Chemical Industry.


Sulfites/metabolism , Sulfur Dioxide/pharmacology , Sulfur/metabolism , Vitis/metabolism , Fruit/chemistry , Fruit/drug effects , Fruit/metabolism , Sulfites/analysis , Sulfur/analysis , Sulfur Dioxide/metabolism , Vitis/chemistry , Vitis/drug effects
14.
J Sci Food Agric ; 102(3): 1300-1304, 2022 Feb.
Article En | MEDLINE | ID: mdl-34312868

BACKGROUND: The present study aimed to determine whether the ozonation process affects the flavonoid biosynthesis in highbush blueberry (Vaccinum corymbosum L.) fruit. Flavanone 3ß-hydroxylase (F3H) was used as a marker of the flavonoid biosynthesis pathway. The activity of F3H, the expression of gene encoding F3H and the antioxidant status in blueberries treated with ozone at a concentration of 15 ppm for 30 min, every 12 h of storage, and maintained at 4 °C for 4 weeks were investigated. RESULTS: The results showed that ozonation process increases the expression of the F3H gene after 1 week of storage, which translates into a higher catalytic capacity of protein, as well as a higher content of flavonoids and total antioxidant potential of ozonated blueberries compared to non-ozonated fruits. CONCLUSION: The present study provides experimental evidence indicating that ozone treatment in proposed process conditions positively affects flavonoid metabolism in highbush blueberry fruit leading to the maintainance of the high quality of the fruit during storage. © 2021 Society of Chemical Industry.


Blueberry Plants/enzymology , Food Preservatives/pharmacology , Fruit/drug effects , Mixed Function Oxygenases/metabolism , Ozone/pharmacology , Plant Proteins/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Blueberry Plants/chemistry , Blueberry Plants/drug effects , Blueberry Plants/genetics , Flavonoids/biosynthesis , Food Preservation , Food Storage , Fruit/chemistry , Fruit/enzymology , Fruit/genetics , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/genetics , Plant Proteins/chemistry , Plant Proteins/genetics
15.
J Sci Food Agric ; 102(3): 1030-1039, 2022 Feb.
Article En | MEDLINE | ID: mdl-34312880

BACKGROUND: Jujube contains a waxy cuticle that acts as a barrier against fungal pathogens, prevents nutrition damage and leakage due to mechanical damage, and maintains water content. Chemical treatment before drying is the most commonly used method for whole jujube. Although chemical pretreatment can effectively enhance drying kinetics, it can lead to the loss of soluble nutrients and cause food safety issues due to chemical residues. Therefore, this study aimed to explore the effect of various pretreatments (cold plasma, cold plasma activated water, ultrasonics, thermosonication, and blanching) on the drying process and quality properties of whole jujube so as to find effective green alternatives to chemical pretreatment. RESULTS: The application of chemical, cold plasma, and thermosonication significantly altered the surface morphology of jujube by etching larger cracks and holes, which can facilitate the transfer of moisture, thereby improving the drying rate and the effective diffusivity. Chemical, cold plasma, and thermosonication pretreatment reduced drying time by 18%, 12%, and 7% respectively, thereby increasing the content of total phenolics by 13%, 12%, and 6% respectively, and enhancing antioxidant capacity (ferric reducing antioxidant power) by 13%, 11%, and 3% respectively. In addition, chemical and cold plasma pretreatment reduced the generation of 5-hydroxymethylfurfural by 25% and 15% respectively. CONCLUSION: Cold plasma is a promising green alternative method to chemical pretreatment for drying processes of whole jujube. © 2021 Society of Chemical Industry.


Desiccation/methods , Food Preservation/methods , Ziziphus/chemistry , Antioxidants/chemistry , Food Preservation/instrumentation , Fruit/chemistry , Fruit/drug effects , Kinetics , Phenols/chemistry , Plasma Gases/pharmacology , Ziziphus/drug effects
16.
J Sci Food Agric ; 102(3): 1124-1136, 2022 Feb.
Article En | MEDLINE | ID: mdl-34329497

BACKGROUND: Although the grape berries are deliberated as a non-climacteric fruit, ethylene seems to be involved in grape berry ripening. However, the precise role of ethylene in regulating the ripening of non-climacteric fruits is poorly understood. RESULTS: Exogenous ethephon (ETH) can stimulate the concentration of internal ethylene and accelerate the accumulation of anthocyanins in berries of 'Fujiminori', including malvidin-, delphinidin-, and petunidin-derivatives (3',4',5'-trihydroxylated anthocyanins) and cyanidin-derivatives (3',4'-dihydroxylated anthocyanins). The content of 3',4',5'-trihydroxylated anthocyanins was extremely higher than 3',4'-dihydroxylated anthocyanins, and ethylene did not affect the composition of anthocyanins in grape. Furthermore, we observed the expression of anthocyanin structural and regulatory genes as well as ethylene biosynthesis and response genes in response to ETH treatment. The anthocyanins accumulation is significantly associated with increased expression of anthocyanin structural (VvPAL, Vv4CH, VvCHS, VvCHI, VvF3H, and VvUFGT) and regulatory genes (VvMYBA1, VvMYBA2, and VvMYBA3), which persisted over the 12 days. In addition, exogenous ETH affected the endogenous ethylene biosynthesis (VvACO2 and VvACO4) and the downstream ethylene regulatory network (VvERS1, VvETR2, VvCTR1, and VvERF005). CONCLUSIONS: These findings bring new insights into the physiological and molecular function of ethylene during berry development and ripening in grapes. © 2021 Society of Chemical Industry.


Anthocyanins/metabolism , Ethylenes/pharmacology , Fruit/growth & development , Plant Growth Regulators/pharmacology , Vitis/drug effects , Anthocyanins/chemistry , Fruit/chemistry , Fruit/drug effects , Fruit/metabolism , Vitis/chemistry , Vitis/growth & development , Vitis/metabolism
17.
J Sci Food Agric ; 102(2): 782-793, 2022 Jan 30.
Article En | MEDLINE | ID: mdl-34227127

BACKGROUND: The application of kaolin particle film is considered a short-term strategy against several environmental stresses in areas with a Mediterranean-like climate. However, it is known that temperature fluctuations and water availability over the season can jeopardize kaolin efficiency in many Mediterranean crops. Hence, this study aims to evaluate the effects of kaolin foliar application on berry phytohormones, antioxidant defence, and oenological parameters at veraison and harvest stages of Touriga-Franca (TF) and Touriga-Nacional (TN) grapevines in two growing seasons (2017 and 2018). The 2017 growing season was considered the driest (-147.1 dryness index) and the warmest (2705 °C growing degree days) of the study. RESULTS: In 2017, TF kaolin-treated berries showed lower salicylic acid (-26.6% compared with unsprayed vines) and abscisic acid (ABA) (-10.5%) accumulation at veraison, whereas salicylic acid increased up to 28.8% at harvest. In a less hot season, TN and TF kaolin-treated grapevines showed a twofold in ABA content and a threefold increase in the indole-3-acetic acid content at veraison and lower ABA levels (83.8%) compared with unsprayed vines at harvest. Treated berries showed a decreased sugar content, without compromising malic and tartaric acid levels, and reactive oxygen species accumulation throughout berry ripening. CONCLUSION: The results suggest kaolin exerts a delaying effect in triggering ripening-related processes under severe summer stress conditions. Treated berries responded with improved antioxidant defence and phytohormone balance, showing significant interactions between kaolin treatment, variety, and developmental stage in both assessed years. © 2021 Society of Chemical Industry.


Fruit/chemistry , Plant Growth Regulators/metabolism , Vitis/drug effects , Vitis/growth & development , Abscisic Acid/analysis , Abscisic Acid/metabolism , Climate , Fruit/drug effects , Fruit/growth & development , Fruit/metabolism , Indoleacetic Acids/analysis , Indoleacetic Acids/metabolism , Kaolin/pharmacology , Plant Growth Regulators/analysis , Salicylic Acid/analysis , Salicylic Acid/metabolism , Vitis/chemistry , Vitis/metabolism
18.
J Sci Food Agric ; 102(2): 628-643, 2022 Jan 30.
Article En | MEDLINE | ID: mdl-34146341

BACKGROUND: Heat shock transcription factors (Hsfs) play pivotal roles in plant responses to stress. Although glycine betaine (GB) and hot water (HW) treatments are effective in reducing chilling injury (CI), little is known about the characterization of the Hsfs gene family and its potential roles in alleviating CI by regulating antioxidant systems in peach fruit. RESULTS: In this study, 17 PpHsfs were identified in the peach genome and were investigated using bioinformatics, including chromosomal locations, phylogenetic relationships, gene structure, motifs, and promoter analyses. The expression patterns of PpHsfs under GB and HW treatments were also investigated. The PpHsfs showed different expression patterns in GB- and HW-treated fruit, and most of them were significantly up-regulated by both treatments, especially PpHsfA1a/b, PpHsfA2a, PpHsfA9a, and PpHsfB2a/b. Meanwhile, GB and HW treatments induced higher levels of gene expression and antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) compared to the control, contributing to the inhibition of hydrogen peroxide (H2 O2 ) accumulation and superoxide anion (O2 .- ) production. Moreover, the correlation analysis between PpHsfs and antioxidant-related genes showed that three PpAPXs were significantly correlated with ten PpHsfs, whereas PpCAT and PpSOD had no significant correlations with PpHsfs, which indicated that PpAPX might be regulated by PpHsfs. CONCLUSIONS: The results indicated that GB and HW treatments induced different PpHsfs transcript levels to regulate the antioxidant gene expressions, which might be beneficial in inhibiting the accumulation of reactive oxygen species and protecting the integrity of cell structure, thus alleviating the development of CI in peach fruit during cold storage. © 2021 Society of Chemical Industry.


Antioxidants/metabolism , Betaine/pharmacology , Genome, Plant , Heat Shock Transcription Factors/genetics , Plant Proteins/genetics , Prunus persica/drug effects , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism , Catalase/genetics , Catalase/metabolism , Food Storage , Fruit/drug effects , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant/drug effects , Heat Shock Transcription Factors/metabolism , Hot Temperature , Hydrogen Peroxide/metabolism , Plant Proteins/metabolism , Prunus persica/genetics , Prunus persica/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxides/metabolism
19.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article En | MEDLINE | ID: mdl-34884527

Sulfur has been previously reported to modulate plant growth and exhibit significant anti-microbial activities. However, the mechanism underlying its diverse effects on plant pathogens has not been elucidated completely. The present study conducted the two-year field experiment of sulfur application to control kiwifruit canker from 2017 to 2018. For the first time, our study uncovered activation of plant disease resistance by salicylic acid after sulfur application in kiwifruit. The results indicated that when the sulfur concentration was 1.5-2.0 kg m-3, the induced effect of kiwifruit canker reached more than 70%. Meanwhile, a salicylic acid high lever was accompanied by the decline of jasmonic acid. Further analysis revealed the high expression of the defense gene, especially AcPR-1, which is a marker of the salicylic acid signaling pathway. Additionally, AcICS1, another critical gene of salicylic acid synthesis, was also highly expressed. All contributed to the synthesis of increasing salicylic acid content in kiwifruit leaves. Moreover, the first key lignin biosynthetic AcPAL gene was marked up-regulated. Thereafter, accumulation of lignin content in the kiwifruit stem and the higher deposition of lignin were visible in histochemical analysis. Moreover, the activity of the endochitinase activity of kiwifruit leaves increased significantly. We suggest that the sulfur-induced resistance against Pseudomonas syringae pv. actinidiae via salicylic activates systemic acquired resistance to enhance plant immune response in kiwifruit.


Actinidia/immunology , Disease Resistance/immunology , Fruit/immunology , Plant Diseases/immunology , Pseudomonas syringae/physiology , Salicylic Acid/metabolism , Sulfur/pharmacology , Actinidia/drug effects , Actinidia/growth & development , Actinidia/metabolism , Disease Resistance/drug effects , Fruit/drug effects , Fruit/growth & development , Fruit/metabolism , Plant Diseases/microbiology , Signal Transduction
20.
Molecules ; 26(22)2021 Nov 11.
Article En | MEDLINE | ID: mdl-34833910

The greatest challenge for the avocado (Persea americana Miller) industry is to maintain the quality of the fruit to meet consumer requirements. Anthracnose is considered the most important disease in this industry, and it is caused by different species of the genus Colletotrichum, although other pathogens can be equally important. The defense mechanisms that fruit naturally uses can be triggered in response to the attack of pathogenic microorganisms and also by the application of exogenous elicitors in the form of GRAS compounds. The elicitors are recognized by receptors called PRRs, which are proteins located on the avocado fruit cell surface that have high affinity and specificity for PAMPs, MAMPs, and DAMPs. The activation of defense-signaling pathways depends on ethylene, salicylic, and jasmonic acids, and it occurs hours or days after PTI activation. These defense mechanisms aim to drive the pathogen to death. The application of essential oils, antagonists, volatile compounds, chitosan and silicon has been documented in vitro and on avocado fruit, showing some of them to have elicitor and fungicidal effects that are reflected in the postharvest quality of the fruit and a lower incidence of diseases. The main focus of these studies has been on anthracnose diseases. This review presents the most relevant advances in the use of natural compounds with antifungal and elicitor effects in plant tissues.


Colletotrichum/pathogenicity , Persea/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Antifungal Agents/pharmacology , Biological Control Agents/pharmacology , Chitosan/pharmacology , Colletotrichum/drug effects , Disease Resistance/physiology , Fruit/drug effects , Fruit/microbiology , Fruit/physiology , Oils, Volatile/pharmacology , Persea/drug effects , Persea/physiology , Volatile Organic Compounds/pharmacology
...